
1
Introduction to Concurrency

Uwe R. Zimmer - The Australian National University

Systems, Networks & Concurrency 2020

Introduction to Concurrency

© 2020 Uwe R. Zimmer, The Australian National University page 162 of 758 (chapter 1: “Introduction to Concurrency” up to page 202)

References for this chapter

[Ben-Ari06]
M. Ben-Ari
Principles of Concurrent and Distributed Programming
2006, second edition, Prentice-Hall, ISBN 0-13-711821-X

Introduction to Concurrency

© 2020 Uwe R. Zimmer, The Australian National University page 163 of 758 (chapter 1: “Introduction to Concurrency” up to page 202)

Forms of concurrency

What is concurrency?
Working defi nitions:

• Literally ‘concurrent’ means:

Adj.: Running together in space, as parallel lines; go-
ing on side by side, as proceedings; occurring togeth-
er, as events or circumstances; existing or arising togeth-
er; conjoint, associated [Oxfords English Dictionary]

Introduction to Concurrency

© 2020 Uwe R. Zimmer, The Australian National University page 164 of 758 (chapter 1: “Introduction to Concurrency” up to page 202)

Forms of concurrency

What is concurrency?
Working defi nitions:

• Literally ‘concurrent’ means:

Adj.: Running together in space, as parallel lines; go-
ing on side by side, as proceedings; occurring togeth-
er, as events or circumstances; existing or arising togeth-
er; conjoint, associated [Oxfords English Dictionary]

• Technically ‘concurrent’ is usually defi ned negatively as:

If there is no observer who can identify two events as being in strict
temporal sequence (i.e. one event has fully terminated before the
other one started) then these two events are considered concurrent.

Introduction to Concurrency

© 2020 Uwe R. Zimmer, The Australian National University page 165 of 758 (chapter 1: “Introduction to Concurrency” up to page 202)

Forms of concurrency

Why do we need/have concurrency?

• Physics, engineering, electronics, biology, …

 basically every real world system is concurrent!

• Sequential processing is suggested by most core computer architectures

… yet (almost) all current processor architectures have concurrent elements

… and most computer systems are part of a concurrent network.

• Strict sequential processing is suggested by widely used programming languages.

 Sequential programming delivers some
fundamental components for concurrent programming

 but we need to add a number of further crucial concepts

Introduction to Concurrency

© 2020 Uwe R. Zimmer, The Australian National University page 166 of 758 (chapter 1: “Introduction to Concurrency” up to page 202)

Forms of concurrency

Why would a computer scientist consider concurrency?

 … to be able to connect computer systems with the real world

 … to be able to employ / design concurrent parts of computer architectures

 … to construct complex software packages (operating systems, compilers, databases, …)

 … to understand when sequential and/or concurrent programming is required

… or: to understand when sequential or concurrent programming can be chosen freely
 … to enhance the reactivity of a system

 … to enhance the performance of a system

 … to be able to design embedded systems

 …

Introduction to Concurrency

© 2020 Uwe R. Zimmer, The Australian National University page 167 of 758 (chapter 1: “Introduction to Concurrency” up to page 202)

Forms of concurrency

A computer scientist’s view on concurrency

• Overlapped I/O and
computation

 Employ interrupt programming
to handle I/O

• Multi-programming
 Allow multiple independent programs
to be executed on one CPU

• Multi-tasking
 Allow multiple interacting processes
to be executed on one CPU

• Multi-processor systems
 Add physical/real concurrency

• Parallel Machines &
distributed operating systems

 Add (non-deterministic)
communication channels

• General network architectures
 Allow for any form of communicating,
distributed entities

Introduction to Concurrency

© 2020 Uwe R. Zimmer, The Australian National University page 168 of 758 (chapter 1: “Introduction to Concurrency” up to page 202)

Forms of concurrency

A computer scientist’s view on concurrency
Terminology for physically concurrent machines architectures:

• SISD
[singe instruction, single data]

 Sequential processors

• SIMD
[singe instruction, multiple data]

 Vector processors

• MISD
[multiple instruction, single data]

 Pipelined processors

• MIMD
[multiple instruction, multiple data]

 Multi-processors or computer networks

Introduction to Concurrency

© 2020 Uwe R. Zimmer, The Australian National University page 169 of 758 (chapter 1: “Introduction to Concurrency” up to page 202)

Forms of concurrency

An engineer’s view on concurrency

 Multiple physical, coupled, dynamical systems form
the actual environment and/or task at hand

 In order to model and control such a system, its inherent concurrency needs to be considered

 Multiple less powerful processors are often preferred over a single high-performance cpu

 The system design of usually strictly based on the structure of the given physical system.

Introduction to Concurrency

© 2020 Uwe R. Zimmer, The Australian National University page 170 of 758 (chapter 1: “Introduction to Concurrency” up to page 202)

Forms of concurrency

Does concurrency lead to chaos?
Concurrency often leads to the following features / issues / problems:

• non-deterministic phenomena

• non-observable system states

• results may depend on more than just the input parameters and states at start time
(timing, throughput, load, available resources, signals … throughout the execution)

• non-reproducible debugging?

Introduction to Concurrency

© 2020 Uwe R. Zimmer, The Australian National University page 171 of 758 (chapter 1: “Introduction to Concurrency” up to page 202)

Forms of concurrency

Does concurrency lead to chaos?
Concurrency often leads to the following features / issues / problems:

• non-deterministic phenomena

• non-observable system states

• results may depend on more than just the input parameters and states at start time
(timing, throughput, load, available resources, signals … throughout the execution)

• non-reproducible debugging?

Meaningful employment of concurrent systems features:

• non-determinism employed where the underlying system is non-deterministic
• non-determinism employed where the actual execution sequence is meaningless
• synchronization employed where adequate … but only there

 Control & monitor where required (and do it right), but not more …

Introduction to Concurrency

© 2020 Uwe R. Zimmer, The Australian National University page 172 of 758 (chapter 1: “Introduction to Concurrency” up to page 202)

Models and Terminology

Concurrency on different abstraction levels/perspectives
 Networks

• Large scale, high bandwidth interconnected nodes (“supercomputers”)

• Networked computing nodes

• Standalone computing nodes – including local buses & interfaces sub-systems

• Operating systems (& distributed operating systems)

 Implicit concurrency

 Explicit concurrent programming (message passing and synchronization)

 Assembler level concurrent programming

• Individual concurrent units inside one CPU

• Individual electronic circuits

• …

Introduction to Concurrency

© 2020 Uwe R. Zimmer, The Australian National University page 173 of 758 (chapter 1: “Introduction to Concurrency” up to page 202)

Models and Terminology

The concurrent programming abstraction

1. What appears sequential on a higher abstraction level,
is usually concurrent at a lower abstraction level:

 e.g. Concurrent operating system or hardware components,
which might not be visible at a higher programming level

2. What appears concurrent on a higher abstraction level,
might be sequential at a lower abstraction level:

 e.g. Multi-processing system,
which are executed on a single, sequential computing node

Introduction to Concurrency

© 2020 Uwe R. Zimmer, The Australian National University page 174 of 758 (chapter 1: “Introduction to Concurrency” up to page 202)

Models and Terminology

The concurrent programming abstraction

• ‘concurrent’ is technically defi ned negatively as:
If there is no observer who can identify two events as being in

strict temporal sequence (i.e. one event has fully terminated before the
other one starts up), then these two events are considered concurrent.

• ‘concurrent’ in the context of programming and logic:
“Concurrent programming abstraction is the study of

interleaved execution sequences of the atomic
instructions of sequential processes.”

(Ben-Ari)

Introduction to Concurrency

© 2020 Uwe R. Zimmer, The Australian National University page 175 of 758 (chapter 1: “Introduction to Concurrency” up to page 202)

Models and Terminology

The concurrent programming abstraction

Concurrent program ::=
Multiple sequential programs (processes or threads)

which are executed concurrently.

P.S. it is generally assumed that concurrent execution means that there
is one execution unit (processor) per sequential program

• even though this is usually not technically correct, it is still an often valid,
conservative assumption in the context of concurrent programming.

Introduction to Concurrency

© 2020 Uwe R. Zimmer, The Australian National University page 176 of 758 (chapter 1: “Introduction to Concurrency” up to page 202)

Models and Terminology

The concurrent programming abstraction

 No interaction between concurrent system parts means that we can
analyze them individually as pure sequential programs [end of course].

Introduction to Concurrency

© 2020 Uwe R. Zimmer, The Australian National University page 177 of 758 (chapter 1: “Introduction to Concurrency” up to page 202)

Models and Terminology

The concurrent programming abstraction

 No interaction between concurrent system parts means that we can
analyze them individually as pure sequential programs [end of course].

 Interaction occurs in form of:

• Contention (implicit interaction):
Multiple concurrent execution units
compete for one shared resource.

• Communication (explicit interaction):
Explicit passing of information and/or explicit synchronization.

Introduction to Concurrency

© 2020 Uwe R. Zimmer, The Australian National University page 178 of 758 (chapter 1: “Introduction to Concurrency” up to page 202)

Models and Terminology

The concurrent programming abstraction

Time-line or Sequence?

Consider time (durations) explicitly:
 Real-time systems join the appropriate courses

Consider the sequence of interaction points only:
 Non-real-time systems stay in your seat

Introduction to Concurrency

© 2020 Uwe R. Zimmer, The Australian National University page 179 of 758 (chapter 1: “Introduction to Concurrency” up to page 202)

Models and Terminology

The concurrent programming abstraction

Correctness of concurrent non-real-time systems
[logical correctness]:

• does not depend on clock speeds / execution times / delays

• does not depend on actual interleaving of concurrent processes

 holds true for all possible sequences of interaction points (interleavings)

Introduction to Concurrency

© 2020 Uwe R. Zimmer, The Australian National University page 180 of 758 (chapter 1: “Introduction to Concurrency” up to page 202)

Models and Terminology

The concurrent programming abstraction

Correctness vs. testing in concurrent systems:
Slight changes in external triggers may (and usually does)
result in completely different schedules (interleaving):

 Concurrent programs which depend in any way on external infl uences cannot be
tested without modelling and embedding those infl uences into the test process.

 Designs which are provably correct with respect to the specifi cation
and are independent of the actual timing behavior are essential.

P.S. some timing restrictions for the scheduling still persist
in non-real-time systems, e.g. ‘fairness’

Introduction to Concurrency

© 2020 Uwe R. Zimmer, The Australian National University page 181 of 758 (chapter 1: “Introduction to Concurrency” up to page 202)

Models and Terminology

The concurrent programming abstraction

Atomic operations:
Correctness proofs / designs in concurrent systems rely on the assumptions of

‘Atomic operations’ [detailed discussion later]:

• Complex and powerful atomic operations ease the correctness
proofs, but may limit fl exibility in the design

• Simple atomic operations are theoretically suffi cient, but may lead to
complex systems which correctness cannot be proven in practice.

Introduction to Concurrency

© 2020 Uwe R. Zimmer, The Australian National University page 182 of 758 (chapter 1: “Introduction to Concurrency” up to page 202)

Models and Terminology

The concurrent programming abstraction

Standard concepts of correctness:

• Partial correctness:
(() ((,))) (,)P I terminates Program I O Q I O&/

• Total correctness:
() (((,)) (,))P I terminates Program I O Q I O& /

where I, O are input and output sets,
P is a property on the input set,

and Q is a relation between input and output sets

 do these concepts apply to and are suffi cient for concurrent systems?

Introduction to Concurrency

© 2020 Uwe R. Zimmer, The Australian National University page 183 of 758 (chapter 1: “Introduction to Concurrency” up to page 202)

Models and Terminology

The concurrent programming abstraction

Extended concepts of correctness in concurrent systems:
 ¬ Termination is often not intended or even considered a failure

Safety properties:
(() (,)) (,)P I Processes I S Q I S&/ X

where QX means that Q does always hold

Liveness properties:
(() (,)) (,)P I Processes I S Q I S&/ o
where Qo means that Q does eventually hold (and will then stay true)

and S is the current state of the concurrent system

Introduction to Concurrency

© 2020 Uwe R. Zimmer, The Australian National University page 184 of 758 (chapter 1: “Introduction to Concurrency” up to page 202)

Models and Terminology

The concurrent programming abstraction

Safety properties:
(() (,)) (,)P I Processes I S Q I S&/ X

where QX means that Q does always hold

Examples:

• Mutual exclusion (no resource collisions)

• Absence of deadlocks
(and other forms of ‘silent death’ and ‘freeze’ conditions)

• Specifi ed responsiveness or free capabilities
(typical in real-time / embedded systems or server applications)

Introduction to Concurrency

© 2020 Uwe R. Zimmer, The Australian National University page 185 of 758 (chapter 1: “Introduction to Concurrency” up to page 202)

Models and Terminology

The concurrent programming abstraction

Liveness properties:
(() (,)) (,)P I Processes I S Q I S&/ o
where Qo means that Q does eventually hold (and will then stay true)

and S is the current state of the concurrent system

Examples:

• Requests need to complete eventually

• The state of the system needs to be displayed eventually

• No part of the system is to be delayed forever (fairness)

 Interesting liveness properties can be very hard to prove

Introduction to Concurrency

© 2020 Uwe R. Zimmer, The Australian National University page 186 of 758 (chapter 1: “Introduction to Concurrency” up to page 202)

Introduction to processes and threads

1 CPU per
control-fl ow

Specifi c confi gurations
only, e.g.:

• Distributed µcontrollers.

• Physical process
control systems:

1 cpu per task,
connected via a
bus-system.

 Process management
(scheduling) not required.

 Shared memory access
need to be coordinated.

CPU
stack

code

CPU
stack

code

CPU
stack

code

address space 1

shared memory

CPU
stack

code

CPU
stack

code

CPU
stack

code

address space n

shared memory

…

Introduction to Concurrency

© 2020 Uwe R. Zimmer, The Australian National University page 187 of 758 (chapter 1: “Introduction to Concurrency” up to page 202)

Introduction to processes and threads

1 CPU for all
control-fl ows

• OS: emulate one CPU
for every control-fl ow:

Multi-tasking
operating system

 Support for memory
protection essential.

 Process management
(scheduling) required.

 Shared memory access
need to be coordinated.

stack
code

stack
code

stack
code

address space 1

shared memory

stack
code

stack
code

CPU

stack
code

address space n

shared memory

…

Introduction to Concurrency

© 2020 Uwe R. Zimmer, The Australian National University page 188 of 758 (chapter 1: “Introduction to Concurrency” up to page 202)

Introduction to processes and threads

Processes

Process ::=

Address space
+ Control fl ow(s)

 Kernel has full
knowledge about all
processes as well as their
states, requirements and
currently held resources.

stack
code

stack
code

stack
code

address space 1

shared memory

stack
code

stack
code

CPU

stack
code

address space n

shared memory

…

p
ro

ce
ss

 1

p
ro

ce
ss

 n

Introduction to Concurrency

© 2020 Uwe R. Zimmer, The Australian National University page 189 of 758 (chapter 1: “Introduction to Concurrency” up to page 202)

Introduction to processes and threads

Threads
Threads (individual control-
fl ows) can be handled:

• Inside the OS:

 Kernel scheduling.

• Thread can easily
be connected to
external events (I/O).

• Outside the OS:

 User-level scheduling.

• Threads may need
to go through their
parent process
to access I/O.

stack
thread

stack
thread

stack
thread

address space 1

shared memory

stack
thread

stack
thread

CPU

stack
thread

address space n

shared memory

…

p
ro

ce
ss

 1

p
ro

ce
ss

 n

Introduction to Concurrency

© 2020 Uwe R. Zimmer, The Australian National University page 190 of 758 (chapter 1: “Introduction to Concurrency” up to page 202)

Introduction to processes and threads

Symmetric
Multiprocessing

(SMP)
All CPUs share the same
physical address space
(and access to resources).

 Any process / thread
can be executed on
any available CPU.

stack
thread

stack
thread

stack
thread

address space 1

shared memory

stack
thread

stack
thread

stack
thread

address space n

shared memory

…

p
ro

ce
ss

 1

p
ro

ce
ss

 n

CPU CPU CPUCPU …

shared memory

p
h

ys
ic

al
 a

d
d

re
ss

 s
p

ac
e

Introduction to Concurrency

© 2020 Uwe R. Zimmer, The Australian National University page 191 of 758 (chapter 1: “Introduction to Concurrency” up to page 202)

Introduction to processes and threads

Processes) Threads

Also processes can share memory and the specifi c defi nition of threads
is different in different operating systems and contexts:

 Threads can be regarded as a group of processes, which
share some resources (process-hierarchy).

 Due to the overlap in resources, the attributes attached to
threads are less than for ‘fi rst-class-citizen-processes’.

 Thread switching and inter-thread communication can be
more effi cient than switching on process level.

 Scheduling of threads depends on the actual thread implementations:

• e.g. user-level control-fl ows, which the kernel has no knowledge about at all.

• e.g. kernel-level control-fl ows, which are handled as processes with some restrictions.

Introduction to Concurrency

© 2020 Uwe R. Zimmer, The Australian National University page 192 of 758 (chapter 1: “Introduction to Concurrency” up to page 202)

Introduction to processes and threads

Process Control Blocks

• Process Id

• Process state:
{created, ready, executing, blocked, suspended, bored …}

• Scheduling attributes:
Priorities, deadlines, consumed CPU-time, …

• CPU state: Saved/restored information while context
switches (incl. the program counter, stack pointer, …)

• Memory attributes / privileges:
Memory base, limits, shared areas, …

• Allocated resources / privileges:
Open and requested devices and fi les, …

… PCBs (links thereof) are commonly enqueued at a certain
state or condition (awaiting access or change in state)

Process Id

Process state

Saved registers

(complete CPU state)

Scheduling info

Memory spaces /

privileges

Allocated resources /

privileges

Process Control Blocks (PCBs)

Introduction to Concurrency

© 2020 Uwe R. Zimmer, The Australian National University page 193 of 758 (chapter 1: “Introduction to Concurrency” up to page 202)

Process states

• created: the task is ready to run, but
not yet considered by any dispatcher

 waiting for admission

• ready: ready to run
 waiting for a free CPU

• running: holds a CPU and executes

• blocked: not ready to run
 waiting for a resource

blockedblocked

ready running

blocked

dispatch

timeout

block

release

created

admit

terminated

finish

m
ai

n
m

em
o

ry

Introduction to Concurrency

© 2020 Uwe R. Zimmer, The Australian National University page 194 of 758 (chapter 1: “Introduction to Concurrency” up to page 202)

Process states

• created: the task is ready to run, but
not yet considered by any dispatcher

 waiting for admission

• ready: ready to run
 waiting for a free CPU

• running: holds a CPU and executes

• blocked: not ready to run
 waiting for a resource

• suspended states: swapped out of
main memory
(none time critical processes)

 waiting for main memory
space (and other resources)

blockedblocked

ready running

blocked

dispatch

timeout

block

release

created

admit

terminated

finish

blockedblockedblocked, susp.

suspend (swap-out)

ready, susp.

suspend (swap out)

release

reload (swap in)

m
ai

n
m

em
o

ry
se

co
nd

ar
y

m
em

o
ry

Introduction to Concurrency

© 2020 Uwe R. Zimmer, The Australian National University page 195 of 758 (chapter 1: “Introduction to Concurrency” up to page 202)

Process states

• created: the task is ready to run, but
not yet considered by any dispatcher

 waiting for admission

• ready: ready to run
 waiting for a free CPU

• running: holds a CPU and executes

• blocked: not ready to run
 waiting for a resource

• suspended states: swapped out of
main memory
(none time critical processes)

 waiting for main memory
space (and other resources)

 dispatching and suspending can
now be independent modules

blockedblocked

ready running

blocked

dispatch

timeout

block

release

created

admit

terminated

finish

blockedblockedblocked, susp.

suspend (swap-out)

ready, susp.

suspend (swap out)

release

reload (swap in)

m
ai

n
m

em
o

ry
se

co
nd

ar
y

m
em

o
ry

Introduction to Concurrency

© 2020 Uwe R. Zimmer, The Australian National University page 196 of 758 (chapter 1: “Introduction to Concurrency” up to page 202)

Process states

CPU
creation

ydaerhctab

ready, suspended

blocked, suspended

blocked

pre-emption or cycle done

terminationn

block or synchronize

executing
admitted dispatch

unblock suspend (swap-out)

swap-in

swap-out

unblock

suspend (swap-out)

Introduction to Concurrency

© 2020 Uwe R. Zimmer, The Australian National University page 197 of 758 (chapter 1: “Introduction to Concurrency” up to page 202)

UNIX processes

In UNIX systems tasks are created by ‘cloning’
pid = fork ();

resulting in a duplication of the current process

… returning ‘0’ to the newly created process (the ‘child’ process)

… returning the process id of the child process to the creating process (the ‘parent’ process)
… or returning ‘-1’ as C-style indication of a failure (in void of actual exception handling)

Frequent usage:

if (fork () == 0) {
… the child’s task …
… often implemented as: exec (“absolute path to executable file“, “args“);
exit (0); /* terminate child process */
} else {
… the parent’s task …
pid = wait (); /* wait for the termination of one child process */
}

Introduction to Concurrency

© 2020 Uwe R. Zimmer, The Australian National University page 198 of 758 (chapter 1: “Introduction to Concurrency” up to page 202)

UNIX processes

Communication between UNIX tasks (‘pipes’)
int data_pipe [2], c, rc;

if (pipe (data_pipe) == -1) {
 perror (“no pipe“); exit (1);
}

if (fork () == 0) {
 close (data_pipe [1]);
 while ((rc = read
 (data_pipe [0], &c, 1)) > 0) {
 putchar (c);
 }
 if (rc == -1) {
 perror (“pipe broken“);
 close (data_pipe [0]);
 exit (1);
 }
 close (data_pipe [0]); exit (0);

} else {

 close (data_pipe [0]);
 while ((c = getchar ()) > 0) {
 if (write(data_pipe[1], &c, 1)== -1) {
 perror (“pipe broken“);
 close (data_pipe [1]);
 exit (1);
 };
 }
 close (data_pipe [1]);
 pid = wait ();
}

Introduction to Concurrency

© 2020 Uwe R. Zimmer, The Australian National University page 199 of 758 (chapter 1: “Introduction to Concurrency” up to page 202)

Concurrent programming languages

Requirement
• Concept of tasks, threads or other potentially concurrent entities

Frequently requested essential elements

• Support for management or concurrent entities (create, terminate, …)

• Support for contention management (mutual exclusion, …)

• Support for synchronization (semaphores, monitors, …)

• Support for communication (message passing, shared memory, rpc …)

• Support for protection (tasks, memory, devices, …)

Introduction to Concurrency

© 2020 Uwe R. Zimmer, The Australian National University page 200 of 758 (chapter 1: “Introduction to Concurrency” up to page 202)

Concurrent programming languages

Language candidates

 Explicit concurrency

• Ada, C++, Rust

• Chill

• Erlang

• Go

• Chapel, X10

• Occam, CSP

• All .net languages

• Java, Scala, Clojure

• Algol 68, Modula-2,
Modula-3

• …

 Implicit (potential)
concurrency

• Lisp, Haskell, Caml,
Miranda, and any other
functional language

• Smalltalk, Squeak

• Prolog

• Esterel, Lustre, Signal

 Wannabe concurrency

• Ruby, Python
[mostly broken due to
global interpreter locks]

 No support:

• Eiffel, Pascal

• C

• Fortran, Cobol, Basic…

 Libraries & interfaces
(outside language
defi nitions)

• POSIX

• MPI (Message
Passing Interface)

• …

Introduction to Concurrency

© 2020 Uwe R. Zimmer, The Australian National University page 201 of 758 (chapter 1: “Introduction to Concurrency” up to page 202)

Languages with implicit concurrency: e.g. functional programming

Implicit concurrency in some programming schemes
Quicksort in a functional language (here: Haskell):

qsort [] = []
qsort (x:xs) = qsort [y | y <- xs, y < x] ++ [x] ++ qsort [y | y <- xs, y >= x]

Pure functional programming is side-effect free
 Parameters can be evaluated independently could run concurrently

Some functional languages allow for lazy evaluation, i.e. sub-
expressions are not necessarily evaluated completely:

borderline = (n /= 0) && (g (n) > h (n))

 If n equals zero then the evaluation of g(n) and h(n) can be stopped (or not even be started).

 Concurrent program parts should be interruptible in this case.

Short-circuit evaluations in imperative languages assume explicit sequential execution:

if Pointer /= nil and then Pointer.next = nil then …

Introduction to Concurrency

© 2020 Uwe R. Zimmer, The Australian National University page 202 of 758 (chapter 1: “Introduction to Concurrency” up to page 202)

Summary

Concurrency – The Basic Concepts
• Forms of concurrency

• Models and terminology

• Abstractions and perspectives: computer science, physics & engineering

• Observations: non-determinism, atomicity, interaction, interleaving

• Correctness in concurrent systems

• Processes and threads

• Basic concepts and notions

• Process states

• Concurrent programming languages:

• Explicit concurrency: e.g. Ada, Chapel

• Implicit concurrency: functional programming – e.g. Haskell, Caml

