
1
Introduction to Concurrency

Uwe R. Zimmer - The Australian National University

Systems, Networks & Concurrency 2020



Introduction to Concurrency

© 2020 Uwe R. Zimmer, The Australian National University page 162 of  758  (chapter 1: “Introduction to Concurrency” up to page 202)

References for this chapter

[Ben-Ari06]
M. Ben-Ari
Principles of Concurrent and Distributed Programming
2006, second edition, Prentice-Hall, ISBN 0-13-711821-X



Introduction to Concurrency

© 2020 Uwe R. Zimmer, The Australian National University page 163 of  758  (chapter 1: “Introduction to Concurrency” up to page 202)

Forms of concurrency

What is concurrency?
Working defi nitions:

• Literally ‘concurrent’ means:

Adj.: Running together in space, as parallel lines; go-
ing on side by side, as proceedings; occurring togeth-
er, as events or circumstances; existing or arising togeth-
er; conjoint, associated [Oxfords English Dictionary]
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Forms of concurrency

What is concurrency?
Working defi nitions:

• Literally ‘concurrent’ means:

Adj.: Running together in space, as parallel lines; go-
ing on side by side, as proceedings; occurring togeth-
er, as events or circumstances; existing or arising togeth-
er; conjoint, associated [Oxfords English Dictionary]

• Technically ‘concurrent’ is usually defi ned negatively as:

If there is no observer who can identify two events as being in strict 
temporal sequence (i.e. one event has fully terminated before the 
other one started) then these two events are considered concurrent.
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Forms of concurrency

Why do we need/have concurrency?

• Physics, engineering, electronics, biology, …

 basically every real world system is concurrent!

• Sequential processing is suggested by most core computer architectures

… yet (almost) all current processor architectures have concurrent elements

… and most computer systems are part of a concurrent network.

• Strict sequential processing is suggested by widely used programming languages.

 Sequential programming delivers some 
fundamental components for concurrent programming

 but we need to add a number of further crucial concepts
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Forms of concurrency

Why would a computer scientist consider concurrency?

 … to be able to connect computer systems with the real world

 … to be able to employ / design concurrent parts of computer architectures

 … to construct complex software packages (operating systems, compilers, databases, …)

 … to understand when sequential and/or concurrent programming is required

… or: to understand when sequential or concurrent programming can be chosen freely
 … to enhance the reactivity of a system

 … to enhance the performance of a system

 … to be able to design embedded systems

 …
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Forms of concurrency

A computer scientist’s view on concurrency

• Overlapped I/O and 
computation

 Employ interrupt programming 
to handle I/O

• Multi-programming
 Allow multiple independent programs 
to be executed on one CPU

• Multi-tasking
 Allow multiple interacting processes 
to be executed on one CPU

• Multi-processor systems
 Add physical/real concurrency

• Parallel Machines & 
distributed operating systems

 Add (non-deterministic) 
communication channels

• General network architectures
 Allow for any form of communicating, 
distributed entities
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Forms of concurrency

A computer scientist’s view on concurrency
Terminology for physically concurrent machines architectures:

• SISD 
[singe instruction, single data]

 Sequential processors

• SIMD 
[singe instruction, multiple data]

 Vector processors

• MISD 
[multiple instruction, single data]

 Pipelined processors

• MIMD 
[multiple instruction, multiple data]

 Multi-processors or computer networks
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Forms of concurrency

An engineer’s view on concurrency

 Multiple physical, coupled, dynamical systems form 
the actual environment and/or task at hand

 In order to model and control such a system, its inherent concurrency needs to be considered

 Multiple less powerful processors are often preferred over a single high-performance cpu

 The system design of usually strictly based on the structure of the given physical system.
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Forms of concurrency

Does concurrency lead to chaos?
Concurrency often leads to the following features / issues / problems:

• non-deterministic phenomena

• non-observable system states

• results may depend on more than just the input parameters and states at start time 
(timing, throughput, load, available resources, signals … throughout the execution)

• non-reproducible  debugging?
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Forms of concurrency

Does concurrency lead to chaos?
Concurrency often leads to the following features / issues / problems:

• non-deterministic phenomena

• non-observable system states

• results may depend on more than just the input parameters and states at start time 
(timing, throughput, load, available resources, signals … throughout the execution)

• non-reproducible  debugging?

Meaningful employment of concurrent systems features:

• non-determinism employed where the underlying system is non-deterministic
• non-determinism employed where the actual execution sequence is meaningless
• synchronization employed where adequate … but only there

 Control & monitor where required (and do it right), but not more …
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Models and Terminology

Concurrency on different abstraction levels/perspectives
 Networks

• Large scale, high bandwidth interconnected nodes (“supercomputers”)

• Networked computing nodes

• Standalone computing nodes – including local buses & interfaces sub-systems

• Operating systems (& distributed operating systems)

 Implicit concurrency

 Explicit concurrent programming (message passing and synchronization)

 Assembler level concurrent programming

• Individual concurrent units inside one CPU

• Individual electronic circuits

• …
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Models and Terminology

The concurrent programming abstraction

1. What appears sequential on a higher abstraction level, 
is usually concurrent at a lower abstraction level:

 e.g. Concurrent operating system or hardware components, 
which might not be visible at a higher programming level

2. What appears concurrent on a higher abstraction level, 
might be sequential at a lower abstraction level:

 e.g. Multi-processing system, 
which are executed on a single, sequential computing node
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Models and Terminology

The concurrent programming abstraction

• ‘concurrent’ is technically defi ned negatively as:
If there is no observer who can identify two events as being in 

strict temporal sequence (i.e. one event has fully terminated before the 
other one starts up), then these two events are considered concurrent.

• ‘concurrent’ in the context of programming and logic:
“Concurrent programming abstraction is the study of 

interleaved execution sequences of the atomic 
instructions of sequential processes.” 

(Ben-Ari)
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Models and Terminology

The concurrent programming abstraction

Concurrent program ::=
Multiple sequential programs (processes or threads)

which are executed concurrently.

P.S. it is generally assumed that concurrent execution means that there 
is one execution unit (processor) per sequential program

• even though this is usually not technically correct, it is still an often valid, 
conservative assumption in the context of concurrent programming.
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Models and Terminology

The concurrent programming abstraction

 No interaction between concurrent system parts means that we can 
analyze them individually as pure sequential programs [end of course].
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Models and Terminology

The concurrent programming abstraction

 No interaction between concurrent system parts means that we can 
analyze them individually as pure sequential programs [end of course].

 Interaction occurs in form of:

• Contention (implicit interaction):
Multiple concurrent execution units 
compete for one shared resource.

• Communication (explicit interaction):
Explicit passing of information and/or explicit synchronization.
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Models and Terminology

The concurrent programming abstraction

Time-line or Sequence?

Consider time (durations) explicitly:
 Real-time systems  join the appropriate courses

Consider the sequence of interaction points only:
 Non-real-time systems  stay in your seat
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Models and Terminology

The concurrent programming abstraction

Correctness of concurrent non-real-time systems 
[logical correctness]:

• does not depend on clock speeds / execution times / delays

• does not depend on actual interleaving of concurrent processes

 holds true for all possible sequences of interaction points (interleavings)
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Models and Terminology

The concurrent programming abstraction

Correctness vs. testing in concurrent systems:
Slight changes in external triggers may (and usually does) 
result in completely different schedules (interleaving):

 Concurrent programs which depend in any way on external infl uences cannot be 
tested without modelling and embedding those infl uences into the test process.

 Designs which are provably correct with respect to the specifi cation 
and are independent of the actual timing behavior are essential.

P.S. some timing restrictions for the scheduling still persist 
in non-real-time systems, e.g. ‘fairness’
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Models and Terminology

The concurrent programming abstraction

Atomic operations:
Correctness proofs / designs in concurrent systems rely on the assumptions of

‘Atomic operations’ [detailed discussion later]:

• Complex and powerful atomic operations ease the correctness 
proofs, but may limit fl exibility in the design

• Simple atomic operations are theoretically suffi cient, but may lead to 
complex systems which correctness cannot be proven in practice.
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Models and Terminology

The concurrent programming abstraction

Standard concepts of correctness:

• Partial correctness:
( ( ) ( ( , ))) ( , )P I terminates Program I O Q I O&/

• Total correctness:
( ) ( ( ( , )) ( , ))P I terminates Program I O Q I O& /

where I, O are input and output sets,
P is a property on the input set,

and Q is a relation between input and output sets

 do these concepts apply to and are suffi cient for concurrent systems?
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Models and Terminology

The concurrent programming abstraction

Extended concepts of correctness in concurrent systems:
 ¬ Termination is often not intended or even considered a failure

Safety properties:
( ( ) ( , )) ( , )P I Processes I S Q I S&/ X

where QX  means that Q does always hold

Liveness properties:
( ( ) ( , )) ( , )P I Processes I S Q I S&/ o
where Qo  means that Q does eventually hold (and will then stay true) 

and S is the current state of the concurrent system



Introduction to Concurrency

© 2020 Uwe R. Zimmer, The Australian National University page 184 of  758  (chapter 1: “Introduction to Concurrency” up to page 202)

Models and Terminology

The concurrent programming abstraction

Safety properties:
( ( ) ( , )) ( , )P I Processes I S Q I S&/ X

where QX  means that Q does always hold

Examples:

• Mutual exclusion (no resource collisions)

• Absence of deadlocks 
(and other forms of ‘silent death’ and ‘freeze’ conditions)

• Specifi ed responsiveness or free capabilities 
(typical in real-time / embedded systems or server applications)
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Models and Terminology

The concurrent programming abstraction

Liveness properties:
( ( ) ( , )) ( , )P I Processes I S Q I S&/ o
where Qo  means that Q does eventually hold (and will then stay true) 

and S is the current state of the concurrent system 

Examples:

• Requests need to complete eventually

• The state of the system needs to be displayed eventually

• No part of the system is to be delayed forever (fairness)

 Interesting liveness properties can be very hard to prove
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Introduction to processes and threads

1 CPU per 
control-fl ow

Specifi c confi gurations 
only, e.g.:

• Distributed µcontrollers.

• Physical process 
control systems:

1 cpu per task, 
connected via a 
bus-system.

 Process management 
(scheduling) not required.

 Shared memory access 
need to be coordinated.

CPU
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Introduction to processes and threads

1 CPU for all 
control-fl ows

• OS: emulate one CPU 
for every control-fl ow:

Multi-tasking 
operating system

 Support for memory 
protection essential.

 Process management 
(scheduling) required.

 Shared memory access 
need to be coordinated.
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Introduction to processes and threads

Processes

Process ::= 

Address space 
+ Control fl ow(s)

 Kernel has full 
knowledge about all 
processes as well as their 
states, requirements and 
currently held resources.
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Introduction to processes and threads

Threads
Threads (individual control-
fl ows) can be handled:

• Inside the OS:

 Kernel scheduling.

• Thread can easily 
be connected to 
external events (I/O).

• Outside the OS:

 User-level scheduling.

• Threads may need 
to go through their 
parent process 
to access I/O.
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Introduction to processes and threads

Symmetric 
Multiprocessing

(SMP)
All CPUs share the same 
physical address space 
(and access to resources).

 Any process / thread 
can be executed on 
any available CPU.
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Introduction to processes and threads

Processes ) Threads

Also processes can share memory and the specifi c defi nition of threads 
is different in different operating systems and contexts:

 Threads can be regarded as a group of processes, which 
share some resources (  process-hierarchy).

 Due to the overlap in resources, the attributes attached to 
threads are less than for ‘fi rst-class-citizen-processes’.

 Thread switching and inter-thread communication can be 
more effi cient than switching on process level.

 Scheduling of threads depends on the actual thread implementations:

• e.g. user-level control-fl ows, which the kernel has no knowledge about at all.

• e.g. kernel-level control-fl ows, which are handled as processes with some restrictions.
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Introduction to processes and threads

Process Control Blocks

• Process Id

• Process state: 
{created, ready, executing, blocked, suspended, bored …}

• Scheduling attributes: 
Priorities, deadlines, consumed CPU-time, …

• CPU state: Saved/restored information while context 
switches (incl. the program counter, stack pointer, …)

• Memory attributes / privileges: 
Memory base, limits, shared areas, …

• Allocated resources / privileges: 
Open and requested devices and fi les, …

… PCBs (links thereof) are commonly enqueued at a certain 
state or condition (awaiting access or change in state)

Process Id

Process state

Saved registers

(complete CPU state)

Scheduling info

Memory spaces /

privileges 

Allocated resources /

privileges

Process Control Blocks (PCBs)
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Process states

• created: the task is ready to run, but 
not yet considered by any dispatcher

 waiting for admission

• ready: ready to run
 waiting for a free CPU

• running: holds a CPU and executes

• blocked: not ready to run
 waiting for a resource

blockedblocked

ready running

blocked

dispatch

timeout

block

release

created

admit

terminated

finish

m
ai

n 
m
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ry
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Process states

• created: the task is ready to run, but 
not yet considered by any dispatcher

 waiting for admission

• ready: ready to run
 waiting for a free CPU

• running: holds a CPU and executes

• blocked: not ready to run
 waiting for a resource

• suspended states: swapped out of 
main memory 
(none time critical processes)

 waiting for main memory 
space (and other resources)

blockedblocked
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dispatch
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reload (swap in)
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Process states

• created: the task is ready to run, but 
not yet considered by any dispatcher

 waiting for admission

• ready: ready to run
 waiting for a free CPU

• running: holds a CPU and executes

• blocked: not ready to run
 waiting for a resource

• suspended states: swapped out of 
main memory 
(none time critical processes)

 waiting for main memory 
space (and other resources)

 dispatching and suspending can 
now be independent modules
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Process states

CPU
creation

ydaerhctab

ready, suspended

blocked, suspended

blocked

pre-emption or cycle done

terminationn

block or synchronize

executing
admitted dispatch

unblock suspend (swap-out)

swap-in

swap-out

unblock

suspend (swap-out)
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UNIX processes

In UNIX systems tasks are created by ‘cloning’
pid = fork ();

resulting in a duplication of the current process

… returning ‘0’ to the newly created process (the ‘child’ process)

… returning the process id of the child process to the creating process (the ‘parent’ process) 
… or returning ‘-1’ as C-style indication of a failure (in void of actual exception handling)

Frequent usage:

if (fork () == 0) {
… the child’s task …
… often implemented as: exec (“absolute path to executable file“, “args“);
exit (0); /* terminate child process */
} else {
… the parent’s task …
pid = wait (); /* wait for the termination of one child process */
}
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UNIX processes

Communication between UNIX tasks (‘pipes’)
int data_pipe [2], c, rc;

if (pipe (data_pipe) == -1) {
 perror (“no pipe“); exit (1);
}

if (fork () == 0) {
 close (data_pipe [1]);
 while ((rc = read
  (data_pipe [0], &c, 1)) > 0) {
   putchar (c);
 }
 if (rc == -1) {
  perror (“pipe broken“);
  close (data_pipe [0]);
  exit (1);
 }
 close (data_pipe [0]); exit (0);

} else {

 close (data_pipe [0]);
 while ((c = getchar ()) > 0) {
  if (write(data_pipe[1], &c, 1)== -1) {
   perror (“pipe broken“);
   close (data_pipe [1]);
   exit (1);
  };
 }
 close (data_pipe [1]);
 pid = wait ();
}
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Concurrent programming languages

Requirement
• Concept of tasks, threads or other potentially concurrent entities

Frequently requested essential elements

• Support for management or concurrent entities (create, terminate, …)

• Support for contention management (mutual exclusion, …)

• Support for synchronization (semaphores, monitors, …)

• Support for communication (message passing, shared memory, rpc …)

• Support for protection (tasks, memory, devices, …)
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Concurrent programming languages

Language candidates

 Explicit concurrency

• Ada, C++, Rust

• Chill

• Erlang

• Go

• Chapel, X10

• Occam, CSP

• All .net languages

• Java, Scala, Clojure

• Algol 68, Modula-2, 
Modula-3

• …

 Implicit (potential) 
concurrency

• Lisp, Haskell, Caml, 
Miranda, and any other 
functional language

• Smalltalk, Squeak

• Prolog

• Esterel, Lustre, Signal

 Wannabe concurrency

• Ruby, Python
[mostly broken due to 
global interpreter locks]

 No support: 

• Eiffel, Pascal

• C

• Fortran, Cobol, Basic…

 Libraries & interfaces 
(outside language 
defi nitions)

• POSIX

• MPI (Message 
Passing Interface)

• …
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Languages with implicit concurrency: e.g. functional programming

Implicit concurrency in some programming schemes
Quicksort in a functional language (here: Haskell):

qsort [] = []
qsort (x:xs) = qsort [y | y <- xs, y < x] ++ [x] ++ qsort [y | y <- xs, y >= x]

Pure functional programming is side-effect free
 Parameters can be evaluated independently  could run concurrently

Some functional languages allow for lazy evaluation, i.e. sub-
expressions are not necessarily evaluated completely:

borderline = (n /= 0) && (g (n) > h (n))

 If n equals zero then the evaluation of g(n) and h(n) can be stopped (or not even be started).

 Concurrent program parts should be interruptible in this case.

Short-circuit evaluations in imperative languages assume explicit sequential execution:

if Pointer /= nil and then Pointer.next = nil then …
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Summary

Concurrency – The Basic Concepts
• Forms of concurrency

• Models and terminology

• Abstractions and perspectives: computer science, physics & engineering

• Observations: non-determinism, atomicity, interaction, interleaving

• Correctness in concurrent systems

• Processes and threads

• Basic concepts and notions

• Process states

• Concurrent programming languages:

• Explicit concurrency: e.g. Ada, Chapel

• Implicit concurrency: functional programming – e.g. Haskell, Caml


